Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38675367

ABSTRACT

In recent years, continuous progress has been made in the development of new anticancer drugs, and several compounds (small molecules, engineered antibodies, immunomodulators, etc [...].

2.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38543102

ABSTRACT

Immunotherapy has marked a revolution in cancer therapy. The most extensively studied target in this field is represented by the protein-protein interaction between PD-1 and its ligand, PD-L1. The promising results obtained with the clinical use of monoclonal antibodies (mAbs) directed against both PD-1 and PD-L1 have prompted the search for small-molecule binders capable of disrupting the protein-protein contact and overcoming the limitations presented by mAbs. The disclosure of the first X-ray complexes of PD-L1 with BMS ligands showed the protein in dimeric form, with the ligand in a symmetrical hydrophobic tunnel. These findings paved the way for the discovery of new ligands. To this end, and to understand the binding mechanism of small molecules to PD-L1 along with the dimerization process, many structure-based computational studies have been applied. In the present review, we examined the most relevant articles presenting computational analyses aimed at elucidating the binding mechanism of PD-L1 with PD-1 and small molecule ligands. Additionally, virtual screening studies that identified validated PD-L1 ligands were included. The relevance of the reported studies highlights the increasingly prominent role that these techniques can play in chemical biology and drug discovery.

3.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003697

ABSTRACT

Nature has always been a precious source of bioactive molecules which are used for the treatment of various diseases [...].


Subject(s)
Antineoplastic Agents , Biological Products , Neoplasms , Humans , Neoplasms/drug therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
4.
Future Med Chem ; 15(20): 1865-1883, 2023 10.
Article in English | MEDLINE | ID: mdl-37886837

ABSTRACT

Aim: Development of dual-acting antibacterial agents containing Erlotinib, a recognized EGFR inhibitor used as an anticancer agent, with differently spaced benzenesulfonamide moieties known to bind and inhibit Helicobacter pylori carbonic anhydrase (HpCA) or the antiviral Zidovudine. Methods & materials: Through rational design, ten derivatives were obtained via a straightforward synthesis including a click chemistry reaction. Inhibitory activity against a panel of pathogenic carbonic anhydrases and antibacterial susceptibility of H. pylori ATCC 43504 were assessed. Docking studies on α-carbonic anhydrase enzymes and EGFR were conducted to gain insight into the binding mode of these compounds. Results & conclusion: Some compounds proved to be strong inhibitors of HpCA and showed good anti-H. pylori activity. Computational studies on the targeted enzymes shed light on the interaction hotspots.


Subject(s)
Carbonic Anhydrases , Helicobacter pylori , Carbonic Anhydrases/metabolism , Helicobacter pylori/metabolism , Erlotinib Hydrochloride/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , ErbB Receptors/metabolism , Structure-Activity Relationship , Molecular Structure , Carbonic Anhydrase IX , Benzenesulfonamides
5.
J Enzyme Inhib Med Chem ; 38(1): 2201402, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37073528

ABSTRACT

Vibrio cholerae causes life-threatening infections in low-income countries due to the rise of antibacterial resistance. Innovative pharmacological targets have been investigated and carbonic anhydrases (CAs, EC: 4.2.1.1) encoded by V. cholerae (VchCAs) emerged as a valuable option. Recently, we developed a large library of para- and meta-benzenesulfonamides characterised by moieties with a different flexibility degree as CAs inhibitors. Stopped flow-based enzymatic assays showed strong inhibition of VchαCA for this library, while lower affinity was detected against the other isoforms. In particular, cyclic urea 9c emerged for a nanomolar inhibition of VchαCA (KI = 4.7 nM) and high selectivity with respect to human isoenzymes (SI≥ 90). Computational studies revealed the influence of moiety flexibility on inhibitory activity and isoform selectivity and allowed accurate SARs. However, although VchCAs are involved in the bacterium virulence and not in its survival, we evaluated the antibacterial activity of such compounds, resulting in no direct activity.


Subject(s)
Carbonic Anhydrases , Vibrio cholerae , Humans , Structure-Activity Relationship , Molecular Structure , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Carbonic Anhydrases/metabolism , Benzenesulfonamides
6.
Molecules ; 27(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36431918

ABSTRACT

Neurodegenerative diseases (NDs) are described as multifactorial and progressive syndromes with compromised cognitive and behavioral functions. The multi-target-directed ligand (MTDL) strategy is a promising paradigm in drug discovery, potentially leading to new opportunities to manage such complex diseases. Here, we studied the dual ability of a set of resveratrol (RSV) analogs to inhibit two important targets involved in neurodegeneration. The stilbenols 1−9 were tested as inhibitors of the human monoamine oxidases (MAOs) and carbonic anhydrases (CAs). The studied compounds displayed moderate to excellent in vitro enzyme inhibitory activity against both enzymes at micromolar/nanomolar concentrations. Among them, the best compound 4 displayed potent and selective inhibition against the MAO-B isoform (IC50 MAO-A 0.43 µM vs. IC50 MAO-B 0.01 µM) with respect to the parent compound resveratrol (IC50 MAO-A 13.5 µM vs. IC50 MAO-B > 100 µM). It also demonstrated a selective inhibition activity against hCA VII (KI 0.7 µM vs. KI 4.3 µM for RSV). To evaluate the plausible binding mode of 1−9 within the two enzymes, molecular docking and dynamics studies were performed, revealing specific and significant interactions in the active sites of both targets. The new compounds are of pharmacological interest in view of their considerably reduced toxicity previously observed, their physicochemical and pharmacokinetic profiles, and their dual inhibitory ability. Compound 4 is noteworthy as a promising lead in the development of MAO and CA inhibitors with therapeutic potential in neuroprotection.


Subject(s)
Carbonic Anhydrases , Neurodegenerative Diseases , Humans , Monoamine Oxidase Inhibitors/chemistry , Resveratrol/pharmacology , Neurodegenerative Diseases/drug therapy , Molecular Docking Simulation , Structure-Activity Relationship , Monoamine Oxidase/metabolism , Carbonic Anhydrases/metabolism
7.
Molecules ; 27(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36431985

ABSTRACT

The involvement of human carbonic anhydrase (hCA) IX/XII in the pathogenesis and progression of many types of cancer is well acknowledged, and more recently human monoamine oxidases (hMAOs) A and B have been found important contributors to tumor development and aggressiveness. With a view of an enzymatic dual-blockade approach, in this investigation, new coumarin-based amino acyl and (pseudo)-dipeptidyl derivatives were synthesized and firstly evaluated in vitro for inhibitory activity and selectivity against membrane-bound and cytosolic hCAs (hCA IX/XII over hCA I/II), as well as the hMAOs, to estimate their potential as anticancer agents. De novo design of peptide-coumarin conjugates was subsequently carried out and involved the combination of the widely explored coumarin nucleus with the unique biophysical and structural properties of native or modified peptides. All compounds displayed nanomolar inhibitory activities towards membrane-anchored hCAs, whilst they were unable to block the ubiquitous CA I and II isoforms. Structural features pertinent to potent and selective CA inhibitory activity are discussed, and modeling studies were found to support the biological data. Lower potency inhibition of the hMAOs was observed, with most compounds showing preferential inhibition of hMAO-A. The binding of the most potent ligands (6 and 16) to the hydrophobic active site of hMAO-A was investigated in an attempt to explain selectivity on the molecular level. Calculated Ligand Efficiency values indicate that compound 6 has the potential to serve as a lead compound for developing innovative anticancer agents based on the dual inhibition strategy. This information may help design new coumarin-based peptide molecules with diverse bioactivities.


Subject(s)
Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Humans , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Monoamine Oxidase/metabolism , Structure-Activity Relationship , Carbonic Anhydrases/chemistry , Coumarins/pharmacology , Coumarins/chemistry , Carbonic Anhydrase II/metabolism
8.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232735

ABSTRACT

Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Neuraminidase , Peptides/pharmacology , Peptides/therapeutic use
9.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36015085

ABSTRACT

The antiproliferative effects played by benzothiazoles in different cancers have aroused the interest for these molecules as promising antitumor agents. In this work, a library of phenylacetamide derivatives containing the benzothiazole nucleus was synthesized and compounds were tested for their antiproliferative activity in paraganglioma and pancreatic cancer cell lines. The novel synthesized compounds induced a marked viability reduction at low micromolar concentrations both in paraganglioma and pancreatic cancer cells. Derivative 4l showed a greater antiproliferative effect and higher selectivity index against cancer cells, as compared to other compounds. Notably, combinations of derivative 4l with gemcitabine at low concentrations induced enhanced and synergistic effects on pancreatic cancer cell viability, thus supporting the relevance of compound 4l in the perspective of clinical translation. A target prediction analysis was also carried out on 4l by using multiple computational tools, identifying cannabinoid receptors and sentrin-specific proteases as putative targets contributing to the observed antiproliferative activity.

10.
Molecules ; 27(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35889522

ABSTRACT

Cancer is a multifactorial disorder caused by several aberrations in gene expression that generate a homeostatic imbalance between cell division and death [...].


Subject(s)
Neoplasms , Cell Division , Humans , Neoplasms/drug therapy , Neoplasms/genetics
11.
Pharmaceuticals (Basel) ; 15(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35745586

ABSTRACT

Triple negative breast cancer (TNBC) is an urgent as well as huge medical challenge, which is associated with poor prognosis and responsiveness to chemotherapies. Since epigenetic changes are highly implicated in TNBC tumorigenesis and development, inhibitors of histone deacetylases (HDACIs) could represent a promising therapeutic strategy. Although clinical trials involving single HDACIs showed disappointing results against TNBC, recent studies emphasize the high potential impact of HDACIs in controlling TNBC. In addition, encouraging results stem from new compounds designed to obtain isoform selectivity and/or polypharmacological HDAC approach. The present review provides a discussion of the HDACIs pharmacophoric models and of the structural modifications, leading to compounds with a potent activity against TNBC progression.

12.
Eur J Med Chem ; 233: 114242, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35276424

ABSTRACT

Neurodegenerative diseases (NDs) are characterized by gradual and progressive loss of selectively vulnerable populations of neurons, including death of neurons in different regions, leading to nervous system dysfunction. However, pharmacological treatments are only symptomatic, because the exact causes of the disease are not yet known. For this reason, in recent years, the research has been focused on the discovery of new molecules able to target neuropathological pathways involved in NDs. A great deal of attention has been paid to natural polyphenols due to their many biological effects and resveratrol has attracted special interest since its ability to interact simultaneously with the multiple targets implicated in NDs. Moreover, the structural simplicity of the stilbene core, the broad spectrum of possible modifications, and the improved synthetic strategies, made resveratrol an attractive chemical starting point for the search of new entities with extended therapeutic uses in NDs. In this review, a systematic update of the resveratrol-based compounds, and Structure-Activity Relationship analysis were provided as promising drug candidates for the treatment of NDs.


Subject(s)
Neurodegenerative Diseases , Stilbenes , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Polyphenols , Resveratrol/pharmacology , Resveratrol/therapeutic use , Stilbenes/chemistry , Stilbenes/pharmacology , Stilbenes/therapeutic use , Structure-Activity Relationship
13.
Biology (Basel) ; 11(1)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35053112

ABSTRACT

The manipulation of host metabolisms by viral infections has been demonstrated by several studies, with a marked influence on the synthesis and utilization of glucose, nucleotides, fatty acids, and amino acids. The ability of virus to perturb the metabolic status of the infected organism is directly linked to the outcome of the viral infection. A great deal of research in recent years has been focusing on these metabolic aspects, pointing at modifications induced by virus, and suggesting novel strategies to counteract the perturbed host metabolism. In this review, our attention is turned on PPARs, nuclear receptors controlling multiple metabolic actions, and on the effects played by PPAR ligands during viral infections. The role of PPAR agonists and antagonists during SARS-CoV-2, HCV, and HCMV infections will be analyzed.

14.
Methods Cell Biol ; 166: 271-307, 2021.
Article in English | MEDLINE | ID: mdl-34752337

ABSTRACT

Protein-protein interactions (PPIs) play a key role in many biological processes and are intriguing targets for drug discovery campaigns. Advancements in experimental and computational techniques are leading to a growth of data accessibility, and, with it, an increased need for the analysis of PPIs. In this respect, visualization tools are essential instruments to represent and analyze biomolecular interactions. In this chapter, we reviewed some of the available tools, highlighting their features, and describing their functions with practical information on their usage.


Subject(s)
Drug Discovery , Protein Interaction Mapping , Computational Biology/methods , Drug Discovery/methods , Protein Interaction Mapping/methods
15.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34681208

ABSTRACT

A library of sulfonate and sulfonamide derivatives of Resveratrol was synthesized and tested for its aromatase inhibitory potential. Interestingly, sulfonate derivatives were found to be more active than sulfonamide bioisosteres with IC50 values in the low micromolar range. The sulfonate analogues 1b-c and 1j exhibited good in vitro antiproliferative activity on the MCF7 cell line, evidenced by MTT and LDH release assays. Structure-activity relationships suggested that electronic and lipophilic properties could have a different role in promoting the biological response for sulfonates and sulfonamides, respectively. Docking studies disclosed the main interactions at a molecular level of detail behind the observed inhibition of the more active compounds whose chemical stability has been evaluated with nano-liquid chromatography. Finally, 1b-c and 1j were highlighted as sulfonates to be further developed as novel and original aromatase inhibitors.

16.
Eur J Med Chem ; 224: 113737, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34365129

ABSTRACT

The exploration of innovative aromatase inhibitors represents an important approach for the identification of new therapeutic treatments of breast cancer. In this respect, a series of phenyldiazenyl sulfonamides was designed, synthesized and tested. Compounds 3b, 3f and 5f showed an aromatase inhibition in the micromolar range and were evaluated in vitro on the human breast cancer cell line MCF7 by MTT assay, cytotoxicity assay (LDH release), cell cycle analysis and apoptosis, revealing a dose-dependent inhibition profile. In particular, 3f displayed the best reduction in terms of metabolic activity and an anti-proliferative effect on MCF7 cells, being blocked in the G1/S phase checkpoint. Moreover, computational studies were carried out to better understand at a molecular level of detail the rationale behind the effective binding to the active site of aromatase of the more active inhibitor 3f. The obtained results allow to consider this compound as an interesting lead for the development of a new class of non-steroidal aromatase inhibitors.


Subject(s)
Aromatase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Sulfonamides/therapeutic use , Aromatase Inhibitors/pharmacology , Female , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Sulfonamides/pharmacology
17.
J Enzyme Inhib Med Chem ; 36(1): 1632-1645, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34289751

ABSTRACT

Nonsteroidal aromatase inhibitors (NSAIs) are well-established drugs for the therapy of breast cancer. However, they display some serious side effects, and their efficacy can be compromised by the development of chemoresistance. Previously, we have reported different indazole-based carbamates and piperidine-sulphonamides as potent aromatase inhibitors. Starting from the most promising compounds, here we have synthesised new indazole and triazole derivatives and evaluated their biological activity as potential dual agents, targeting both the aromatase and the inducible nitric oxide synthase, being this last dysregulated in breast cancer. Furthermore, selected compounds were evaluated as antiproliferative and cytotoxic agents in the MCF-7 cell line. Moreover, considering the therapeutic diversity of azole-based compounds, all the synthesized compounds were also evaluated as antifungals on different Candida strains. A docking study, as well as molecular dynamics simulation, were carried out to shed light on the binding mode of the most interesting compound into the different target enzymes catalytic sites.


Subject(s)
Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Aromatase Inhibitors/pharmacology , Azo Compounds/pharmacology , Breast Neoplasms/drug therapy , Molecular Docking Simulation , Mycoses/drug therapy , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aromatase Inhibitors/chemical synthesis , Aromatase Inhibitors/chemistry , Azo Compounds/chemical synthesis , Azo Compounds/chemistry , Candida/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Molecular Structure , Structure-Activity Relationship
18.
Molecules ; 26(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803309

ABSTRACT

The inhibition of cyclin dependent kinases 4 and 6 plays a role in aromatase inhibitor resistant metastatic breast cancer. Three dual CDK4/6 inhibitors have been approved for the breast cancer treatment that, in combination with the endocrine therapy, dramatically improved the survival outcomes both in first and later line settings. The developments of the last five years in the search for new selective CDK4/6 inhibitors with increased selectivity, treatment efficacy, and reduced adverse effects are reviewed, considering the small-molecule inhibitors and proteolysis-targeting chimeras (PROTACs) approaches, mainly pointing at structure-activity relationships, selectivity against different kinases and antiproliferative activity.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Aromatase Inhibitors/pharmacology , Breast Neoplasms/drug therapy , Female , Humans , Molecular Targeted Therapy/trends
19.
Eur J Med Chem ; 211: 113115, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33360796

ABSTRACT

In the search for novel aromatase inhibitors, a series of triazole and imidazole-based carbamate derivatives were designed and synthesized. Final compounds were thus evaluated against human aromatase by in vitro kinetic experiments in a fluorimetric assay in comparison with letrozole. The effect of most active derivatives 13a and 15c was then evaluated in vitro on the human breast cancer cell line MCF7 by MTT assay, cytotoxicity assay (LDH release) and cell cycle analysis, revealing a dose-dependent inhibition profile of cell viability and low micromolar IC50 values. In addition, docking simulations were also carried out to elucidate at a molecular level of detail the binding modes adopted to target human aromatase.


Subject(s)
Aromatase Inhibitors/chemical synthesis , Aromatase Inhibitors/therapeutic use , Carbamates/chemical synthesis , Carbamates/therapeutic use , Imidazoles/chemical synthesis , Imidazoles/therapeutic use , Triazoles/chemical synthesis , Triazoles/therapeutic use , Aromatase Inhibitors/pharmacology , Carbamates/pharmacology , Drug Design , Humans , Imidazoles/pharmacology , Molecular Structure , Triazoles/pharmacology
20.
ChemMedChem ; 15(22): 2157-2163, 2020 11 18.
Article in English | MEDLINE | ID: mdl-32783298

ABSTRACT

Under different pathological conditions, aberrant induction of neuronal nitric oxide synthase (nNOS) generates overproduction of NO that can cause irreversible cell damage. The aim of this study was to develop an amidoxime prodrug of a potent nNOS inhibitor, the benzhydryl acetamidine. We synthesized the benzhydryl acetamidoxime, which was evaluated in vitro to ascertain the potential NOS inhibitory activity, as well as conducting bioconversion into the parent acetamidine. The prodrug was also profiled for in vitro physicochemical properties, by determining the lipophilicity, passive permeation through the human gastrointestinal tract and across the blood-brain barrier by PAMPA, and chemical, enzymatic, and plasma stability. The obtained data demonstrate that the amidoxime prodrug shows an improved pharmacokinetic profile with respect to the acetamidine nNOS inhibitor, thus suggesting that it could be a promising lead compound to treat all those pathological conditions in which nNOS activity is dysregulated.


Subject(s)
Amidines/pharmacology , Benzhydryl Compounds/pharmacology , Enzyme Inhibitors/pharmacology , Nitric Oxide Synthase Type I/antagonists & inhibitors , Prodrugs/pharmacology , Amidines/chemical synthesis , Amidines/chemistry , Benzhydryl Compounds/chemical synthesis , Benzhydryl Compounds/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Nitric Oxide Synthase Type I/metabolism , Prodrugs/chemical synthesis , Prodrugs/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...